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We discuss the relationship between the cycle probabilities in the path-integral representation of the ideal
Bose gas, off-diagonal long-range order, and Bose-Einstein condensation. Starting from the Landsberg recur-
sion relation for the canonic partition function, we use elementary considerations to show that in a box of size
L3 the sum of the cycle probabilities of length k�L2 equals the off-diagonal long-range order parameter in the
thermodynamic limit. For arbitrary systems of ideal bosons, the integer derivative of the cycle probabilities is
related to the probability of condensing k bosons. We use this relation to derive the precise form of the �k in
the thermodynamic limit. We also determine the function �k for arbitrary systems. Furthermore, we use the
cycle probabilities to compute the probability distribution of the maximum-length cycles both at T=0, where
the ideal Bose gas reduces to the study of random permutations, and at finite temperature. We close with
comments on the cycle probabilities in interacting Bose gases.
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I. INTRODUCTION

The canonic partition function of N ideal bosons in a sys-
tem with energy levels �0=0��1�¯ at inverse temperature
�=1/ �kBT� is given by

ZN = ��
�

�
n�=0

N �exp�− ��
�

n�������n�,N. �1�

For each state �, the allowed occupation numbers n� go from
0 to N, and the Kronecker � function enforces the total num-
ber of particles to be N.

The Feynman path-integral 	1
 represents ZN as a trace
over the diagonal density matrix �bos,

ZN =� dx1 ¯ dxN�bos	�x1, . . . ,xN,�x1, . . . ,xN,�
 ,

which is given in terms of the N! permutations P of the
distinguishable-particle density matrix �,

�bos	�x1, . . . ,xN,�x1�, . . . ,xN� ,�


=
1

N!�P

�	�x1, . . . ,xN,�xP1
� , . . . ,xPN

� ,�
 . �2�

Thus the partition function is a sum of N! permutation-
dependent terms, ZN=�PZP, and it is possible to define the
probability of a permutation P as

�P =
ZP

ZN
. �3�

Permutations can be broken up into cycles, and one may also
define cycle probabilities:

�k =
1

ZN
�

P��N,k
ZP, �4�

where �N ,k denotes the set of all permutations where the
particle N belongs to a cycle of length k. The choice of the
particle N in Eq. �4� is arbitrary.

In this paper, we are concerned with the characterization
of the cycle probabilities �k in the ideal Bose gas and with
their relation to quantities characterizing Bose-Einstein con-
densation, namely the off-diagonal long-range order �in Sec.
III, see also Refs. 	2,3
� and the condensate fraction �in Sec.
IV�. In fact, for arbitrary finite systems of ideal bosons, the
discrete derivative of the function �k yields the probabilities
for condensing k bosons 	4
. This relation between the cycle
statistics and the condensate fraction has not been scrutinized
before in detail. It allows us to determine the �k from the
known fluctuation properties of the ideal Bose gas. It is also
possible, and very instructive, to compute the cycle prob-
abilities �k directly via the infinite-density limit of a finite
Bose gas �see Sec. V�. Furthermore, we will exploit some of
the subtleties of the concept of cycle probabilities to compute
the probability distribution of the maximum-length cycle at
zero temperature, where the problem reduces to a study of
random permutations 	5
. Our preceding analysis of the �k
allows us to understand why this distribution is essentially
unchanged at finite temperature, below the condensation
temperature �Sec. VI�. Finally, we briefly review some
known relations between Bose condensation and the pres-
ence of infinite cycles for interacting Bose gases �Sec. VII�.

II. RECURSION RELATIONS FOR THE PARTITION
FUNCTION AND THE DENSITY MATRIX

The Landsberg recursion relation 	6
 gives ZN as a sum of
only N terms,

ZN =
1

N
�
k=1

N

ZN−kzk, �5�

where the zk=Z1�k��=�� exp�−k���� are the single-particle
partition functions at inverse temperature k�. In fact, the
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terms appearing in Eq. �5� are the cycle probabilities:

�k = ZN−kzk/�NZN� . �6�

This is because k particles on a permutation cycle of length k
at inverse temperature � have the same statistical weight zk
as a single particle at inverse temperature k� and, further-
more, in the ideal Bose gas, the different cycles of a permu-
tation are statistically independent. Thus in Eq. �6�, the cycle
contributes zk, and the remaining N−k particles contribute
ZN−k �see Ref. 	7
�.

The off-diagonal single-particle density matrix,

�N�r,r�,�� =� dx1 ¯ dxN−1

	 �bos	�x1, . . . ,xN−1,r,�x1, . . . ,xN−1,r�,�
 ,

is also a sum of permutation-dependent terms, and the
Landsberg recursion relation can be generalized to a nondi-
agonal single-particle density matrix ��r ,r� ,k�� rather than
to the diagonal one:

�N�r,r�,�� =
1

N
�
k=1

N

ZN−k��r,r�,k�� , �7�

V

ZN
�N�r,r�,�� = �

k=1

N

�kRk
cut�r,r�� , �8�

where V is the volume of the system. In Eq. �8�, the
cycle probabilities �k are modified by the cutoff func-
tion Rk

cut�r ,r��, which is proportional to the ratio of the
off-diagonal and the diagonal density matrices. In the
three-dimensional homogeneous Bose gas in a periodic
cubic box of size L3, we have Rk

cut�r ,r��=L3��r ,r� ,k�� /zk

=��0,r−r� ,k�� /��0,0 ,k��.
As is well known, the condensate fraction is proportional

to the off-diagonal single-particle density matrix in the limit
�r−r��→
, a case that corresponds to �r−r���L in a cubic
box of length L for L→
. The cutoff function then vanishes
for small k, and terms with k�

L2

2� dominate the sum in Eq.
�8� 	8
.

III. OFF-DIAGONAL LONG-RANGE ORDER
AND CYCLE PROBABILITIES

In this section, we discuss a relation between the off-
diagonal long-range order parameter and the sum of cycle
probabilities for the homogeneous Bose gas, with unit mass
and particle density 	m=�=1, N=L3 ,Tc=2� /�3/2�2/3
.
To analyze Eq. �8�, we notice that zk�1 for k�

L2

2� and
zk�L3 / �2��k�3/2 for k�

L2

2� . It follows from ZN−k�ZN that

�k � �1/�2��k�3/2 for k �
L2

2�

1/N for k �
L2

2�
.� �9�

We now study the cutoff function Rk
cut�r ,r�� for �r−r��

�L. For concreteness, we suppose that the vector r−r� has

the same components in all three space directions: r−r�
=L�� ,� ,�� with 0���

1
2 and denote the corresponding cut-

off function and the off-diagonal density matrix by Rk
cut���

and by �N���, respectively. We have

Rk
cut��� =��w�Z

e−�� + w�2L2/�2k��

�w�Z
e−w2L2/�2k�� �3

.

For k�
L2

2� , both the numerator and the denominator are
��2��k /L, so that Rk

cut����1. For k�
L2

2� , the numerator is
�exp�−3�2L2 / �2�k�, and the denominator is �1. This
shows that the monotonic function Rk

cut��� is exponentially
small for k�

L2

2� and equal to unity for k�
L2

2� �see Fig. 1�.
The estimates for Rk

cut and for �k imply

lim
L→


�
k=1

L2

�kRk
cut��� = 0,

lim
L→


�
k=L2

N

�k	1 − Rk
cut���
 = 0. �10�

�see the Appendix for a short, but rigorous derivation�. It
follows that

lim
L→


�L3�N���
ZN

− �
k=constL2

N

�k� = 0. �11�

This equation relates the probabilities of infinite cycles to
off-diagonal long-range order and 	because
lim�r−r��→


V
ZN

�N�r ,r� ,�� gives the condensate fraction
 also
to the condensate fraction. The relation between cycle
lengths and off-diagonal long-range order is natural because,
in order for a cycle to contribute to the off-diagonal density
matrix for �r−r���L, its de Broglie wavelength must be at
least comparable to the distance L, which means that the
particle must belong to a cycle of length k with L��2�k�
�see also Refs. 	2,9
 for related derivations�.

1

1/N

L
2+ǫ

L
2

L
2−ǫ

cycle length k

a) b) c) d)

πk∝k
−3/2

/

Rk
cut∼e

−cL
2
/βk

\

πk∼1/N

\

Rk
cut∼1

/

//

//

N − Nsat

∝L
2

FIG. 1. Cycle probabilities �k and cutoff function Rk
cut for a

periodic box of size L3 below Tc.
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IV. CONDENSATE FRACTION AS A DERIVATIVE OF THE
CYCLE PROBABILITIES

In Sec. III, we studied the sum of the cycle probabilities.
We now discuss the fact that the discrete derivative of the
cycle probabilities exactly gives the condensation probabili-
ties. This relation allows us to compute the �k, and it in-
volves neither a cutoff function nor the thermodynamic limit
and holds for arbitrary systems of ideal bosons. The relation
was mentioned very briefly in the context of Monte Carlo
calculations 	4
, but it was not analyzed in any detail.

Let us define SN�k ,�� as the canonic partition function
with N bosons of which exactly k are in state � �see Ref. 	6
�
and, similarly, the restricted partition function with at least k
bosons in the state �, as

YN�k,�� = �
k�=k

N

SN�k�,�� = e−�k��ZN−k. �12�

	SN�k ,�� /ZN is the probability of having exactly k bosons in
state �.
 Summing Eq. �12� over all states �, and dividing by
NZN, we recover the cycle probabilities,

1

NZN
�
�

YN�k,�� =
��

e−�k��

NZN
ZN−k = �k,

whose negative discrete derivative,

�k − �k+1 = �
�

SN�k,��/�NZN� , �13�

thus yields the sum over all � of the probabilities of con-
densing k bosons into state �. We note that the left-hand side
of Eq. �13� contains only quantities related to the path-
integral picture, whereas the right-hand side involves only
energy levels. Furthermore, we note that the probability of
condensing k particles into excited levels is zero for large k,
so that Eq. �13� effectively relates the ground-state conden-
sation probabilities to the derivative of the cycle probabili-
ties.

To illustrate the relation between cycles and condensation
probabilities, we consider the example of Fig. 2 of N par-
ticles in a periodic box, with the cycle probabilities explicitly
computed from the Landsberg recursion relation. For k

�N /2, the derivative of the cycle probabilities equals the
sum of the probabilities of condensing k bosons into state �.
More generally, for k�

L2

2� , the condensation probabilities
into the excited states vanish and �k−�k+1�SN�k ,0� / �NZN�
directly yields the probability distribution of having k par-
ticles in the ground state, a distribution with mean value k
= �N0� and standard deviation �L2. On the other hand, for
small k, as already discussed, the discrete derivative behaves
as k−5/2. It describes the probabilities of condensing k bosons
into excited states. Finally, for L2

2� �k and k� �N0�
−L2 / �2���3/2, the probability of having k particles in the
condensate vanishes, so that the �k are constant.

V. DIRECT CALCULATION OF CYCLE PROBABILITIES

We have seen in Sec. IV that the cycle probabilities �k
follow from the known fluctuations of the condensate in the
canonic ensemble. It is very instructive to compute them
directly via the infinite-density limit for the partition function
of an arbitrary system. For k�

L2

2� , we have zk�1, so that
�k�ZN−k /ZN. For illustration, the Fig. 3 shows the Zk in a
fixed physical system �for the homogeneous Bose gas, in a
fixed box of size L3�, as it can be computed numerically from
the Landsberg recursion relation. The limiting value Z
 �at
infinite density� and the value k=Nsat of largest variation of
Zk can be computed exactly.

Indeed, as the ground-state energy is zero, ZN differs from
ZN−1 only by configurations without any particle in the
ground state: ZN−ZN−1=SN�0,0� 	see above Eq. �12�
. There-
fore ZN=�k=1

N Sk�0,0� with

Sk�0,0� = ��
��0

�
n�=0


 �exp�− � �
��0

n��������0n�,k.

Summing this equation over all integers k yields, for arbi-
trary states ���,

Z
 = �
��0

1

1 − exp�− ����
= exp��

k=1



zk − 1

k
� . �14�

This exact formula for a finite canonical Bose system can be
obtained without the usual saddle-point integration. It agrees
with the grand-canonical partition function for the excited
states at zero chemical potential because at high density the
condensate serves as a reservoir for the excited bosons.

To determine the value of N for which the partition func-
tion Zk passes from Zk�0 to Zk�Z
 �see Fig. 3�, we again

1/N

0

NN−Nsat0

cy
cl

e
p
ro

b
a
b
il
it

ie
s

cycle length k

πk
/

πk − πk+1
/

FIG. 2. Cycle probabilities �k and their negative discrete deriva-
tive �not to scale� for N=125 ideal bosons in a periodic box of size
L3=53 at temperature T /Tc=0.5 �Nsat=48.7�.

Z∞

0

Nsat0
N

ZN

FIG. 3. Canonic partition function ZN as a function of N in a
finite system.
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take a discrete derivative and consider the probability distri-
bution of the number of excited particles,

�
�Nexc = k� = �Zk − Zk−1�/Z
,

whose mean value, the saturation number, is

Nsat = �Nexc� = �
k=1




k�
�Nexc = k� = �
��0

exp�− ����
1 − exp�− ����

= �
k=1




�zk − 1� . �15�

The variance of the number of excited particles is again
given exactly by the corresponding grand-canonical expres-
sions

�Nexc
2 � − �Nexc�2 = �

��0

1

exp����� − 1
+

1

	exp����� − 1
2

= Nsat + �
k=2




�k − 1��zk − 1� . �16�

For completeness, we give the expressions corresponding
to Eqs. �14�–�16� in the homogeneous Bose gas, in the limit
L→
: Z
�exp	L3 / �2���−5/2�5/2�
 and, furthermore,
Nsat /L3��3/2� / �2���3/2=�c, with �c the critical density.
In addition, the variance of Nexc behaves as L4 / �2���3 	10
,
so that the jump of Zk /ZN from 0 to 1, for T�Tc, takes place
in a window of width L2, as already noted in Sec. IV.

Putting together the analysis of Zk for a fixed size of the
system and a varying particle number, and our knowledge of
zk, we have a complete description of the cycle probabilities
�k. Once we know exactly the behavior of the �k in the
thermodynamic limit, we observe that the sum of the �k for
k�

L2

2� gives exactly the critical density �c, and the sum of
the �k for k�

L2

2� gives the condensate fraction. This conclu-
sion is the same as in Sec. III, but it stems from a micro-
scopic analysis of the cycle probabilities.

VI. MAXIMUM CYCLE LENGTHS

At finite temperature, the cycle probabilities �k are easily
computed from the Landsberg recursion relation, and at T
=0, they are given by �k=1/N. In Monte Carlo calculations
the entire permutation of N elements can be sampled, starting
from the cycle containing the element N, which has length k
with probability �k. This leaves one with a system of N−k
particles, for which the probabilities of the cycle containing
element �N−k� can again be computed, etc. �see Ref. 	7
�.
	At zero temperature, the distribution remains �k=1/ �N−k�,
at finite temperature, it is given by Eq. �6�.


In this section, we use the cycle probabilities �k to obtain
analytical results for pk

max, the probability that the longest
cycle in a permutation has length k. This probability distri-
bution is closely related to the distribution �k both at finite
temperature and at T=0, where the ideal Bose gas is equiva-
lent to the problem of random permutations, which has been
much studied in the mathematics literature. We recover some

classic results which we generalize to finite temperatures.
We first note that the cycle probabilities are related to the

mean number of cycles of length k, �̃k=N�k /k. For k
�N /2, �̃k coincides with the probability pk that the permu-
tation P has at least one cycle of length k. This is simply
because a permutation of N elements can have no more than
one such cycle, in other words, because

�̃k = �
m=1




m 	 � prob. to have

m cycles of length k
� �17�

and

pk = �
m=1


 � prob. to have

m cycles of length k
� �18�

and only terms with m=1 contribute to the above expres-
sions if k�N /2.

Furthermore, any cycle of length k�N /2 must be the
longest cycle, so that we arrive for all temperatures at

pk
max = pk = �̃k = N�k/k for k � N/2, ∀ T . �19�

We next consider the probability distributions pk and pk
max for

k�N /2 at T=0, for N→
. We take the continuum limit
pk→p�x� by setting pk= 1

N p�x=k /N� 	and similarly for
pmax�x� and �̃�x�
.

It follows from the recursive procedure, and from the fact
that the �k are of order 1 /N, that the probability to have
more than one cycle of the same length is O�1/N2�. In the
limit N→
, we see that p�x�= �̃�x�=1/x.

For x�1/2, the probability pmax�x� is the product of the
probability to sample x, and the probability that x remains
the longest cycle in the remaining partition of length 1−x, in
other words,

pmax�x� = p�x��1 − �prob. that longest cycle in

	0,1 − x
 is � x
��

At T=0, and in the limit N→
, the probability that in a
permutation of length N�1−x� the longest cycle’s length ex-
ceeds Nx equals the probability that in a permutation of N
elements the longest cycle exceeds x / �1−x�, and we arrive at

pmax�x� = p�x��1 − �
x/�1−x�

1

dx�pmax�x��� . �20�

For all x� 
0,1	, x�x / �1−x�, so Eq. �20� can be used to
compute pmax�x� from x=1 downwards to arbitrary precision
�see Fig. 4�. Alternatively, we can transform Eq. �20� into a
differential equation

d

dx
pmax�x� = −

1

x
pmax�x� +

1

x�1 − x�2 pmax� x

1 − x
� .

Explicit formulas for pmax�x� are easily obtained, starting by
inputting, from Eq. �19�, pmax�x� for 1

2 �x�1 to obtain pmax

in the window x�	 1
3 , 1

2

, etc.,
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pmax�x� = �
1

x
for

1

2
� x

1

x
�1 − ln�1 − x

x
�� for

1

3
� x �

1

2
,�

but they become cumbersome �see also Ref. 	11
�.
At finite temperature, the cycle of the element N is

sampled from a distribution �k as shown in Fig. 2 rather than
from the flat distribution. However, the longest cycle is again
of length �N, and it is sampled from an essentially constant
distribution in the interval x� 	0, �N0� /N
. In the thermody-
namic limit, for T�Tc, the distribution pmax�x� of the prop-
erly rescaled variable x=kmax/ �N0� trivially agrees with the
one obtained at T=0. In particular, the mean length of the
longest cycle is given by 0.624�N0� at all temperatures T
�Tc 	5
. At sufficiently low temperature, the rounding at x
�1 is exactly described by Eq. �19� �see Fig. 4�.

VII. INTERACTING BOSE GAS

For the interacting Bose gas, the relation between off-
diagonal long-range order and the infinite cycles has been
studied for generalized mean-field models �	2,12
�, where it
was shown that Bose-Einstein condensation and finite den-
sity of particles belonging to infinite cycles are equivalent.
But it has not been possible to establish analogous rigorous
results for models with realistic interactions. In the general
case, the definition of the superfluid density in terms of the
winding numbers 	13
 proves that for the homogeneous Bose
gas in three dimensions, the presence of infinite cycles is
equivalent to a nonzero superfluid density. It is generally
admitted that in homogeneous systems, Bose-Einstein con-
densation implies superfluidity, so that the presence of a con-
densate would imply the existence of infinite cycles in those
systems.

On the other hand, the question whether superfluidity im-
plies Bose-Einstein condensation for homogeneous bosonic
quantum systems �above two dimensions� has no rigorous
answer. �We note that two-dimensional superfluids are not
Bose condensed.� In three dimensions, empirical evidence
points to the direct link between superfluidity in homoge-
neous superfluid systems and Bose-Einstein condensation,
but a proof that superfluidity implies Bose-Einstein conden-

sation is still lacking. This is related to the curious difficulty,
pointed out for example in Ref. 	14
, to rigorously prove the
existence of Bose-Einstein condensation for interacting sys-
tems.

In any case, the direct link between the cycle probabilities
and the condensate fraction, as described in Sec. IV, cannot
hold for interacting systems. This is easily seen at T=0 be-
cause the ground state of any system of identical but distin-
guishable particles has bosonic symmetry. Therefore the
distinguishable-particle density matrix

�	�x1, . . . ,xN,�xP1
, . . . ,xPN

,� = 



is independent of the permutation P. It follows that at T=0,
and for finite N, all permutations have the same weight and
the cycle probabilities again satisfy �k= 1

N . At the same time,
the condensate fraction of interacting systems at T=0 is less
than 1 	15
, and the distribution of the �k cannot be related to
the distribution of N0 in the same manner as in the ideal Bose
gas.

VIII. CONCLUSION

In conclusion, we have discussed the relation between the
off-diagonal long-range order, the condensate fraction, and
the cycle probabilities in the ideal Bose gas. Only long
cycles �k�const L2 in the homogeneous case� contribute to
the off-diagonal long-range order parameter, and Bose Ein-
stein condensation is equivalent to the presence of infinite
cycles. We have also discussed the probability distribution
for long cycles, and the general, nonintuitive, link between
the integer derivative of the cycle probabilities and the num-
ber of condensed bosons. This integer derivative provides us
with a purely topological characterization of the condensate
fraction in the ideal Bose gas. Our knowledge of the cycle
probabilities allows us to study the distribution of the longest
cycle. We have remarked that the 0�T�Tc case can be
understand from the T=0 case. The mean length of the long-
est cycle is proportional to the number of condensed bosons.
For the interacting Bose gas, at the present time, only the
winding-number formula 	13
 has been rigorously shown to
relate the topology of Feynman paths to another characteris-
tic of interacting Bose-condensed systems, namely the super-
fluid density. The link between Bose-Einstein condensation
and superfluidity is not clearly elucidated 	14
 and it will
need to be explored further in order to better understand the
cycles of the interacting Bose gas.
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APPENDIX: DERIVATION OF EQ. (10)

In this Appendix, we prove Eq. �10�. We consider the
sums separately in the regions �a�–�d� indicated in Fig. 1 and
show that they all vanish individually.
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FIG. 4. Probability pmax�x� from a numerical integration of Eq.
�20� at T=0, compared to the distribution pk

max obtained from a
Monte Carlo sampling at T=Tc /2, and the exact expression of Eq.
�19� for large x, at T=Tc /2.
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In region �a�, �kRk
cut�����k exp	−3�2L� /�
, and the nor-

malization of the �k shows that the partial sum vanishes in
the limit L→
. In �b�, �kRk

cut��L2−�RL2
cut

�const/L3�2−��/2

and the partial sum is smaller than const L3�/2−1. In �c�, as
1−Rk

cut��� decreases with k, �k	1−Rk
cut���
��L2	1−RL2

cut���

and the partial sum is dominated by const L�−1. Finally, in

�d�, �k	1−Rk
cut���
��k	1−RL2+�

cut ���
. The normalization con-
dition of the �k and the relation L2+��L2 imply that this
partial sum vanishes for L→
. With a suitable choice of �
�for example �= 1

2 �, these sums all vanish for L→
. In fact,
any function ��L��1/ ln L that satisfies ��L��2/3 for L
�L0 can be used.
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